

The Science of sPhenix: In this talk focus on light flavor Jets

What did we learned from RHIC and LHC?

Do we have a (qualitative) consistent picture?

What (new) measurements can we perform utilizing the "strength" of RHIC/sPhenix?

RHIC and LHC "Jet Landscape"

The QGP at the LHC

- fireball hotter (~20%) and denser
 (~x2) and longer lifetime wrt RHIC
- bulk dynamics, $v_n(p_T)$, similar at RHIC and LHC, mainly driven by initial state "geometry"

RHIC and LHC "Jet Landscape"

The QGP at the LHC

- fireball hotter (~20%) and denser
 (~x2) and longer lifetime wrt RHIC
- bulk dynamics, $v_n(p_T)$, similar at RHIC and LHC, mainly driven by initial state "geometry"

Mainly gluon jets (p_T <200 GeV) at the LHC. Quark jets at RHIC p_T >40 GeV.

Naive: What is jet quenching?

Jet quenching = Gluon radiation:

Multiple final-state gluon radiation off the produced hard parton induced by the traversed dense colored medium ~ "Gluon Bremsstrahlung"

- → Modification of the Jet Structure/Fragmentation Function
- = fractional jet momentum carried by the individual jet particles/constituents

Jet Measurements at the LHC

Jet RAA/RCP at the LHC

 $R_{CP}^{Jet} \sim R_{AA} \sim 0.5 (>50 \text{ GeV})$

No significant p_T and R dependence of R_{CP} for p_T>100 GeV

Di-jet Asymmetry/Imbalance AJ

$$A_{J} = \frac{p_{\text{T,1}} - p_{\text{T,2}}}{p_{\text{T,1}} + p_{\text{T,2}}}$$

Di-jet Asymmetry/Imbalance AJ

Significant di-jet momentum imbalance A_J observed in central Pb+Pb

Coincidence Measurements: γ-Jet

 p_T^{γ} >60 GeV p_T^{Jet} >30 GeV

Large quenching effects seen in direct photon measurements

(Consistent with jets measurements? Quark vs. gluon energy loss?)

No angular de-correlation

Jet Softening in Pb-Pb Collisions!?

Jet Softening in Pb-Pb Collisions!?

(Small) Enhancement at low z (Moderate) Suppression at intermediate z No suppression at high z!!!

Where does the lost energy go at the LHC? Missing ptll

The momentum difference in the di-jet is balanced by low p_T particles at large angles relative to the away side jet axis!

Jet Measurements at RHIC

Jets @ RHIC: γ^{direct}/jet-hadron correlations

Enhancement at low z
Suppression at high z
Broadening at low z

Jets @ RHIC: γ^{direct}/jet-hadron correlations

Jet Broadening at low p_T (large uncertainties due to potential jet v₂/v₃)

Consistent picture between ydirect/jet-hadron correlations @ RHIC!

Caveat: Jet-Hadron correlations probe jet structure only statistically!
 → Use fully reconstructed di-jets, direct comparison to LHC!

Current Status: Jet Quenching at RHIC and the LHC

Hot QCD Matter White Paper, arXiv:1502.02730

Do we have a consistent picture?

Do we have a consistent picture?

LHC larger energy loss at early times (medium more dense, mainly gluon jets)

→ diffusion in medium → larger angles

RHIC smaller energy loss at early times (less dense medium, quark jets)

- → less diffusion in the medium → closer to jet axis
- → Radiative energy loss (pQCD) picture can qualitatively explain the differences RHIC/LHC

Do we have a consistent picture? "Medium-scale" ...

T. Renk, Phys.Rev. C87 (2013) 2, 024905

Back-of-the-envelope estimate of the scale (T. Renk) given by the typical accumulated medium momentum probed during subsequent interactions: **Pmed = L/λ** \langle **P** \rangle

Typical length L = 5 fm; mean-free path $\lambda = 1$ fm and typical momentum scale in the medium $\langle P \rangle = 3T$ (with the medium temperature T = 200 MeV) \rightarrow Pmed $\approx 2-3$ GeV for RHIC

Do we have a consistent picture? "Medium-scale" ...

T. Renk, Phys.Rev. C87 (2013) 2, 024905

Back-of-the-envelope estimate of the scale (T. Renk) given by the typical accumulated medium momentum probed during subsequent interactions: **Pmed = L/λ** \langle **P** \rangle

Typical length L = 5 fm; mean-free path $\lambda = 1$ fm and typical momentum scale in the medium $\langle P \rangle = 3T$ (with the medium temperature T = 200 MeV) \rightarrow Pmed $\approx 2-3$ GeV for RHIC

Apparent increase in Pmed = $L/\lambda\langle P\rangle\approx 4-5$ GeV at the LHC qualitatively consistent with pQCD arguments!

Do we have a consistent picture? What about the FF at the LHC?

FF ratio @ high z → 1 Consistent with radiative energy loss picture or something new?

Do we have a consistent picture? What about the FF at the LHC?

FF ratio @ high $z \rightarrow 1$

Consistent with radiative energy loss picture or something new?

Initial parton energy $> E_{Jet}(AA)$

In FF measurements:

 $E_{Jet}(pp) = E_{Jet}(AA)$

(only small enhancement of jet energy at low-z, few %)

But what about the virtuality of the (leading) parton after energy loss in the medium?

Do we have a consistent picture? Importance of Virtuality ...

A. Majumder and JP, arXiv:1408.3403

Comparing jets in AA with pp with the same (reconstructed) energy might not be sufficient: <u>not comparing apples-with-apples</u>

Leading parton after escaping the medium expected to have lower virtuality/jet-mass → will fragment harder wrt pp!

→ Jet Mass measurements at the LHC (and RHIC) necessary ...

Jet Quenching in the QGP

(Qualitative) Consistent pQCD-type radiative jet energy loss picture

Jet Quenching in the QGP

perturbative QCD (pQCD, weak coupling)

$$Q_0^2 >> Q_1^2 >> Q_2^2 >> \cdots$$

 $S_0^2 << S_1^2 << S_2^2 << \cdots$

Figure 1.17: Scale probed in the medium in [1/fm] via high energy partons as a function of the local temperature in the medium. The red (black) curves are for different initial parton energies in the RHIC (LHC) medium.

(Qualitative) Consistent pQCD-type radiative jet energy loss picture

→ Jets (via their virtuality evolution) probe the QGP over a wide range of length scales; Jets are QGP microscopes!

Ouark Gluon Plasma

Jet Mass/Virtuality Measurements in Heavy-Ion Collisions

$$M_{Jet} = \sqrt{E_{Jet}^2 - p_{Jet}^2} \propto Virtuality$$

Jet shape derivative method (area based): Soyez et al. arXiv:1211.2811

Constituent subtraction: Berta et al. arXiv:1403.3108 Talk by A. Majumder yesterday

Type 1: which quantify how the medium changes the jet

$$\hat{q}(E,Q^2)$$
 $\hat{q}_4(E,Q^2) = \frac{\langle p_T^4 \rangle - \langle p_T^2 \rangle^2}{L} \dots$

$$\hat{e}(E,Q^2)$$
 $\hat{e}_2(E,Q^2) = \frac{\langle \delta E^2 \rangle}{L}$ $\hat{e}_4(E,Q^2) = \frac{\langle \delta E^4 \rangle - \langle \delta E^2 \rangle^2}{L}$...

Experimental access to virtuality via Jet Mass M_{Jet} measurements

→ Adds a new dimension: E and Q²

Allows more differential jet quenching measurements as function of E and Q²: For example fragmentation functions, radial profile, ...

→ Strong constraints on models!

Soft Drop on One Slide

Soft Drop Condition:

Recursively drop wide-angle soft radiation

Based on declustering an angular-ordered tree

Final jet looks like QCD splitting function

$$\frac{z}{1-z} \updownarrow \theta$$

$$\int \frac{d\theta}{\theta} dz P(z) \uparrow$$
AP splitting function

 β parameter gives nice handle

[Larkoski, Marzani, Soyez, JDT, 1402.2657]

[see also Butterworth, Davison, Rubin, Salam, 0802.2470; Dasgupta, Fregoso, Marzani, Salam, 1307.0007]

Measuring the QCD Splitting Function ("Sub-Jets")

$$\beta = 0$$

$$\Rightarrow z > z_{\text{cut}}$$

$$\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}z_g} = \frac{\overline{P}_i(z_g)}{\int_{z_{\mathrm{cut}}}^{1/2} dz \, \overline{P}_i(z)} + \dots$$

- \sim independent of α_s
- ~ independent of jet p_T (>30 GeV)
- ~ same for quark and gluon

Measuring the QCD Splitting Function ("Sub-Jets")

$$rac{1}{\sigma}rac{\mathrm{d}\sigma}{\mathrm{d}z_g} = rac{\overline{P}_i(z_g)}{\int_{z_{\mathrm{cut}}}^{1/2} dz \, \overline{P}_i(z)} \quad + \dots$$

- \sim independent of α_s
- ~ independent of jet p_T (>30 GeV)
- ~ same for quark and gluon

Measuring the QCD Splitting Function ("Sub-Jets")

$$\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}z_g} = \frac{\overline{P}_i(z_g)}{\int_{z_{\mathrm{cut}}}^{1/2} dz \, \overline{P}_i(z)} \quad + \dots$$

- \sim independent of α_s
- ~ independent of jet p_T (>30 GeV)
- ~ same for quark and gluon

Effect of bkg. fluctuations in z_g suppressed wrt to other sub-jet measurement

→ Good variable for HI!

The Role of Biases: Jet-Geometry-Engineering

T. Renk, PRC 87 (2013) 024905 and PRC 88 (2013) 054902

Biases (p_TCut, R, ...) can be used to change systematically the pathlength of the recoil jet (even more when also applied on recoil jet definition)

→ Jet-Geometry-Engeneering

Further advantage at RHIC:

Steeply falling spectrum at RHIC

→ good correlation *initial parton energy*

Calculate A_j with constituent p_{T,cut}>2 GeV/c

$$A_{J} = rac{p_{ ext{T,1}} - p_{ ext{T,2}}}{p_{ ext{T,1}} + p_{ ext{T,2}}} \qquad p_{T} = p_{T}^{rec} -
ho imes A$$

Calculate A_j with constituent p_{T,cut}>2 GeV/c

$$A_{J} = rac{p_{ ext{T,1}} - p_{ ext{T,2}}}{p_{ ext{T,1}} + p_{ ext{T,2}}} \hspace{0.5cm} p_{T} = p_{T}^{rec} -
ho imes A$$

Calculate "matched" |A_j| with constituent p_{T,cut}>0.2 GeV/c.

Select modified di-jet pairs with p_Tcut>2 GeV/c in Au+Au

Select modified di-jet pairs with p_Tcut>2 GeV/c in Au+Au

First (biased) Di-Jet Imbalance (A_J) Measurements at RHIC

Select modified di-jet pairs with p_Tcut>2 GeV/c in Au+Au

→ Quenched jet energy is recovered at low p_T within a cone of R=0.4 (also jet broadening in 0.2 – 0.4 observed)

sPhenix: Made for it ;-)

sPhenix: Made for it ;-)

sPhenix: Made for it ;-) Biased Aj measurements

<u>Important Application:</u> We can select a biased di-jet sample in which the energy is recovered and we can turn it on/off = control! Excellent tool to study soft gluon radiation and thermalization!

Jet Quenching in the QGP - Experimental Observables

Jet Quenching in the QGP - Experimental Observables

Can we follow the parton shower further? z_g and Jet Mass of 2^{nd} , 3^{rd} , ... split?

Crucial: Improvements in Theory

(Full) Jet Measurements are necessary to determine Type 1 and Type 2 jet quenching transport coefficients

Next Gen Jet Quenching MC models needed!

We must (shall) work together to ensure success!

TechQM-like working group desirable!

A "RHIC Jet Working Group"?

Is it possible to establish a RHIC Jet Working Group (or whatever other appropriate name) in particular allowing access to STAR data to pursue/test/explore/learn RHIC jet measurements for interested sPhenix collaborators?

(Of course one has to carefully evaluate potential manpower issues ...)

Summary

Hot QCD Matter White Paper, arXiv:1502.02730

Jet Measurements in sPhenix → Answering Fundamental Questions of QCD (Matter)

Backup

Soft-Drop Algorithm

The soft drop declustering procedure depends on two parameters, a soft threshold z_{cut} and an angular exponent β , and is implemented as follows:

- 1. Break the jet j into two subjets by undoing the last stage of C/A clustering. Label the resulting two subjets as j_1 and j_2 .
- 2. If the subjets pass the soft drop condition $\left(\frac{\min(p_{T1}, p_{T2})}{p_{T1} + p_{T2}} > z_{\text{cut}} \left(\frac{\Delta R_{12}}{R_0}\right)^{\beta}$, see Eq. (1.1) then deem j to be the final soft-drop jet. (Optionally, one could also impose the mass-drop condition $\max(m_1, m_2) < \mu m$ as in Ref. [6], but we will not use that here.)
- 3. Otherwise, redefine j to be equal to subjet with larger p_T and iterate the procedure.
- 4. If j is a singleton and can no longer be declustered, then one can either remove j from consideration ("tagging mode") or leave j as the final soft-drop jet ("grooming mode").

Jet Structure: Radial Moment

Di-jet Asymmetry/Imbalance as function of leading jet p_T

Di-jet Asymmetry/Imbalance as function of leading jet p_T

Di-Jet imbalance decreasing with increasing jet energy!

"Can be explained in terms of essentially known physics, i.e. the increased collimation of jets due to kinematics and a transition to a less gluon- dominated regime." : T.Renk, arXiv:1204.5572

Jet Structure in Pb-Pb Collisions cont.

Modest jet broadening seen in differential jet shape and R dependence of jet R_{CP}

(especially at lower jet p_T)

Coincidence Measurements: h-Jet

Recoil spectrum suppressed

No significant broadening

No angular de-correlation (also seen in h-jet @RHIC)

Di-Jet Imbalance A_J Au+Au 0-20% R=0.2

p-value<10⁻¹⁰ (stat. error only)

Di-Jet Imbalance A_J Au+Au 0-20% R=0.2

p-value<10⁻¹⁰ (stat. error only)

p-value<10⁻⁴ (stat. error only)

Matched Au+Au A_J ≠ p+p A_J for R=0.2 → (recoil) Jet broadening in 0.2 – 0.4

Calculate spectrum shift

• requires distributions ~ exponential, ratio ~ flat

Spectrum Shift Periph/pp →Central				
	p ^{ch} _{T,jet} range [GeV]	Shift R=0.3 [GeV]	Shift R=0.5 [GeV]	
Au+Au @ 200 GeV	[10,20]	$-6.3 \pm 0.6 \pm 0.8$	$-3.8 \pm 0.5 \pm 1.8$	
Pb+Pb @ 2.76 TeV ALICE arXiv:1506.03984	[60,100]		-8 ± 2	

• requires distributions ~ exponential, ratio ~ flat

Spectrum Shift Periph/pp →Central				
	p ^{ch} _{T,jet} range [GeV]	Shift R=0.3 [GeV]	Shift R=0.5 [GeV]	
Au+Au @ 200 GeV	[10,20]	$-6.3 \pm 0.6 \pm 0.8$	$-3.8 \pm 0.5 \pm 1.8$	
Pb+Pb @ 2.76 TeV ALICE arXiv:1506.03984	[60,100]		-8 ± 2	

RHIC: smaller shift for larger R

R=0.5: smaller shift at RHIC than LHC

Out-of-cone energy transport ?

• comparison requires similar trigger bias → theory calculation